Sensory Population Decoding for Visually Guided Movements
نویسندگان
چکیده
We have used a new approach to study the neural decoding function that converts the population response in extrastriate area MT into estimates of target motion to drive smooth pursuit eye movement. Experiments reveal significant trial-by-trial correlations between the responses of MT neurons and the initiation of pursuit. The preponderance of significant correlations and the relatively low reduction in noise between MT and the behavioral output support the hypothesis of a sensory origin for at least some of the trial-by-trial variation in pursuit initiation. The finding of mainly positive MT-pursuit correlations, whether the target speed is faster or slower than the neuron's preferred speed, places strong constraints on the neural decoding computation. We propose that decoding is based on normalizing a weighted population vector of opponent motion responses; normalization comes from neurons uncorrelated with those used to compute the weighted population vector.
منابع مشابه
Transfer of Coded Information from Sensory to Motor
During sensory-guided motor tasks, information must be transferred from arrays of neurons coding target location to motor networks that generate and control movement. We address two basic questions about this information transfer. First, what mechanisms assure that the diier-ent neural representations align properly so that activity in the sensory network representing target location evokes a m...
متن کاملA population decoding framework for motion aftereffects on smooth pursuit eye movements.
Both perceptual and motor systems must decode visual information from the distributed activity of large populations of cortical neurons. We have sought a common framework for understanding decoding strategies for visually guided movement and perception by asking whether the strong motion aftereffects seen in the perceptual domain lead to similar expressions in motor output. We found that motion...
متن کاملThe Importance of Lateral Connections in the Parietal Cortex for Generating Motor Plans
Substantial evidence has highlighted the significant role of associative brain areas, such as the posterior parietal cortex (PPC) in transforming multimodal sensory information into motor plans. However, little is known about how different sensory information, which can have different delays or be absent, combines to produce a motor plan, such as executing a reaching movement. To address these ...
متن کاملGrasping without Sight: Insights from the Congenitally Blind
We reach for and grasp different sized objects numerous times per day. Most of these movements are visually-guided, but some are guided by the sense of touch (i.e. haptically-guided), such as reaching for your keys in a bag, or for an object in a dark room. A marked right-hand preference has been reported during visually-guided grasping, particularly for small objects. However, little is known ...
متن کاملTransfer of coded information from sensory to motor networks.
During sensory-guided motor tasks, information must be transferred from arrays of neurons coding target location to motor networks that generate and control movement. We address two basic questions about this information transfer. First, what mechanisms assure that the different neural representations align properly so that activity in the sensory network representing target location evokes a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 79 شماره
صفحات -
تاریخ انتشار 2013